direct product, metabelian, supersoluble, monomial, A-group, rational
Aliases: C22×C3⋊S3, C6⋊2D6, C62⋊5C2, C32⋊3C23, (C2×C6)⋊5S3, C3⋊2(C22×S3), (C3×C6)⋊3C22, SmallGroup(72,49)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3⋊S3 — C2×C3⋊S3 — C22×C3⋊S3 |
C32 — C22×C3⋊S3 |
Generators and relations for C22×C3⋊S3
G = < a,b,c,d,e | a2=b2=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 272 in 96 conjugacy classes, 41 normal (5 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, C32, D6, C2×C6, C3⋊S3, C3×C6, C22×S3, C2×C3⋊S3, C62, C22×C3⋊S3
Quotients: C1, C2, C22, S3, C23, D6, C3⋊S3, C22×S3, C2×C3⋊S3, C22×C3⋊S3
Character table of C22×C3⋊S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -2 | 1 | 1 | -1 | 2 | 1 | -2 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -2 | -2 | 1 | 1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | -2 | 1 | -1 | 1 | 1 | -2 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | 1 | -2 | 2 | 1 | 1 | 1 | -2 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | -2 | -2 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -2 | 1 | 1 | 1 | 2 | -1 | -2 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 2 | -1 | -1 | -1 | -2 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -2 | 2 | -1 | 1 | 1 | 1 | -2 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | -1 | 2 | -2 | 1 | 1 | 1 | -2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -2 | 1 | 1 | 1 | -2 | -1 | 2 | orthogonal lifted from D6 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 2 | -1 | -1 | 1 | -2 | 1 | -2 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -2 | 1 | 1 | 1 | -2 | 1 | 2 | -1 | orthogonal lifted from D6 |
(1 29)(2 30)(3 28)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)
(1 11)(2 12)(3 10)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 5 8)(2 6 9)(3 4 7)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(2 3)(4 9)(5 8)(6 7)(10 12)(13 18)(14 17)(15 16)(19 21)(22 27)(23 26)(24 25)(28 30)(31 36)(32 35)(33 34)
G:=sub<Sym(36)| (1,29)(2,30)(3,28)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27), (1,11)(2,12)(3,10)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,5,8)(2,6,9)(3,4,7)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (2,3)(4,9)(5,8)(6,7)(10,12)(13,18)(14,17)(15,16)(19,21)(22,27)(23,26)(24,25)(28,30)(31,36)(32,35)(33,34)>;
G:=Group( (1,29)(2,30)(3,28)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27), (1,11)(2,12)(3,10)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,5,8)(2,6,9)(3,4,7)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (2,3)(4,9)(5,8)(6,7)(10,12)(13,18)(14,17)(15,16)(19,21)(22,27)(23,26)(24,25)(28,30)(31,36)(32,35)(33,34) );
G=PermutationGroup([[(1,29),(2,30),(3,28),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)], [(1,11),(2,12),(3,10),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,5,8),(2,6,9),(3,4,7),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(2,3),(4,9),(5,8),(6,7),(10,12),(13,18),(14,17),(15,16),(19,21),(22,27),(23,26),(24,25),(28,30),(31,36),(32,35),(33,34)]])
C22×C3⋊S3 is a maximal subgroup of
C6.D12 C6.11D12 C62⋊C4 Dic3⋊D6 C22×S32 C62⋊C6
C22×C3⋊S3 is a maximal quotient of C12.59D6 C12.D6 C12.26D6
Matrix representation of C22×C3⋊S3 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 1 |
0 | 0 | -1 | 0 |
0 | -1 | 0 | 0 |
1 | -1 | 0 | 0 |
0 | 0 | -1 | 1 |
0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,-1,-1,0,0,1,0],[0,1,0,0,-1,-1,0,0,0,0,-1,-1,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C22×C3⋊S3 in GAP, Magma, Sage, TeX
C_2^2\times C_3\rtimes S_3
% in TeX
G:=Group("C2^2xC3:S3");
// GroupNames label
G:=SmallGroup(72,49);
// by ID
G=gap.SmallGroup(72,49);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,323,1204]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export